Lambert Conic Conformal (2SP Belgium)
| Name
| Lambert Conic Conformal (2SP Belgium)
|
| EPSG Code
| 9803
|
| GeoTIFF Code
| (unsupported)
|
| OGC WKT Name
| Lambert_Conformal_Conic_2SP_Belgium
|
| Supported By
| EPSG, OGC WKT
|
Projection Parameters
| Name
| EPSG #
| GeoTIFF ID
| OGC WKT
| Units
| Notes
|
| Latitude of false origin
| 1
| FalseOriginLat
| latitude_of_origin
| Angular
|
|
| Longitude of false origin
| 2
| FalseOriginLong
| central_meridian
| Angular
|
|
| Latitude of first standard parallel
| 3
| StdParallel1
| standard_parallel_1
| Angular
|
|
| Latitude of second standard parallel
| 4
| StdParallel2
| standard_parallel_2
| Angular
|
|
| Easting of false origin
| 6
| FalseOriginEasting
| false_easting
| Linear
|
|
| Northing of false origin
| 7
| FalseOriginNorthing
| false_northing
| Linear
|
|
Notes
This doesn't appear to be supported by GeoTIFF.
EPSG Notes
Since 1972 a modified form of the two standard parallel case has been used in Belgium.
For the Lambert Conic Conformal (2 SP Belgium), the formulas for the standard two
standard parallel case given above are used except for:
Easting, E = EF + r sin (* - a)
Northing, N = NF + rF - r cos (* - a)
and for the reverse formulas
* = ((*' + a)/n) +*0
where a = 29.2985 seconds.","For Projected Coordinate System Belge l972 / Belge Lambert 72
Parameters:
Ellipsoid International 1924, a = 6378388 metres
1/f = 297
then e = 0.08199189 and e^2 = 0.006722670
First Standard Parallel 49o50'00""N = 0.86975574 rad
Second Standard Parallel 51o10'00""N = 0.89302680 rad
Latitude False Origin 90o00'00""N = 1.57079633 rad
Longitude False Origin 4o21'24.983""E = 0.07604294 rad
Easting at false origin EF 150000.01 metres
Northing at false origin NF 5400088.44 metres
Forward calculation for:
Latitude 50o40'46.461""N = 0.88452540 rad
Longitude 5o48'26.533""E = 0.10135773 rad
first gives :
m1 = 0.64628304 m2 = 0.62834001
t = 0.59686306 tF = 0.00000000
t1 = 0.36750382 t2 = 0.35433583
n = 0.77164219 F = 1.81329763
r = 37565039.86 rF = 0.00
alpha = 0.00014204 theta = 0.01953396
Then Easting E = 251763.20 metres
Northing N = 153034.13 metres
Reverse calculation for same easting and northing first gives:
theta' = 0.01939192 r' = 548041.03
t' = 0.35913403
Then Latitude = 50o40'46.461""N
Longitude = 5o48'26.533""E