Name | Lambert Conic Conformal (2SP Belgium) |
EPSG Code | 9803 |
GeoTIFF Code | (unsupported) |
OGC WKT Name | Lambert_Conformal_Conic_2SP_Belgium |
Supported By | EPSG, OGC WKT |
Name | EPSG # | GeoTIFF ID | OGC WKT | Units | Notes |
---|---|---|---|---|---|
Latitude of false origin | 1 | FalseOriginLat | latitude_of_origin | Angular | |
Longitude of false origin | 2 | FalseOriginLong | central_meridian | Angular | |
Latitude of first standard parallel | 3 | StdParallel1 | standard_parallel_1 | Angular | |
Latitude of second standard parallel | 4 | StdParallel2 | standard_parallel_2 | Angular | |
Easting of false origin | 6 | FalseOriginEasting | false_easting | Linear | |
Northing of false origin | 7 | FalseOriginNorthing | false_northing | Linear |
Easting, E = EF + r sin (* - a) Northing, N = NF + rF - r cos (* - a) and for the reverse formulas * = ((*' + a)/n) +*0 where a = 29.2985 seconds.","For Projected Coordinate System Belge l972 / Belge Lambert 72 Parameters: Ellipsoid International 1924, a = 6378388 metres 1/f = 297 then e = 0.08199189 and e^2 = 0.006722670 First Standard Parallel 49o50'00""N = 0.86975574 rad Second Standard Parallel 51o10'00""N = 0.89302680 rad Latitude False Origin 90o00'00""N = 1.57079633 rad Longitude False Origin 4o21'24.983""E = 0.07604294 rad Easting at false origin EF 150000.01 metres Northing at false origin NF 5400088.44 metres Forward calculation for: Latitude 50o40'46.461""N = 0.88452540 rad Longitude 5o48'26.533""E = 0.10135773 rad first gives : m1 = 0.64628304 m2 = 0.62834001 t = 0.59686306 tF = 0.00000000 t1 = 0.36750382 t2 = 0.35433583 n = 0.77164219 F = 1.81329763 r = 37565039.86 rF = 0.00 alpha = 0.00014204 theta = 0.01953396 Then Easting E = 251763.20 metres Northing N = 153034.13 metres Reverse calculation for same easting and northing first gives: theta' = 0.01939192 r' = 548041.03 t' = 0.35913403 Then Latitude = 50o40'46.461""N Longitude = 5o48'26.533""E