Name | Polar Stereographic |
EPSG Code | 9810 |
GeoTIFF Code | CT_PolarStereographic (15) |
OGC WKT Name | Polar_Stereographic |
Supported By | EPSG, GeoTIFF, PROJ.4, OGC WKT |
Name | EPSG # | GeoTIFF ID | OGC WKT | Units | Notes |
---|---|---|---|---|---|
Latitude of natural origin | 1 | NatOriginLat | latitude_of_origin | Angular | |
Longitude of natural origin | 2 | StraightVertPoleLong | central_meridian | Angular | |
Scale factor at natural origin | 5 | ScaleAtNatOrigin | scale_factor | Unitless | Not in original GeoTIFF ... I added for similarity with EPSG. Defaults to 1.0. |
False Easting | 6 | FalseEasting | false_easting | Linear | |
False Northing | 7 | FalseNorthing | false_northing | Linear |
Projected X | Projected Y | Longitude | Latitude |
---|---|---|---|
-2529570 | -5341800 | 121d20'22.38"W | 39d6'4.508"N |
+proj=stere +lat_ts=Latitude at natural origin +lat_0=90 +lon_0=Longitude at natural origin +k_0=Scale factor at natural origin (normally 1.0) +x_0=False Easting +y_0=False NorthingSouth Pole (NatOriginLat < 0):
+proj=stere +lat_ts=Latitude at natural origin +lat_0=-90 +lon_0=Longitude at natural origin +k_0=Scale factor at natural origin (normally 1.0) +x_0=False Easting +y_0=False Northing
E = FE + rho sin(lon - lon0) N = FN - rho cos(lon - lon0) where rho = 2 a ko t /{[((1+e)^(1+e)) ((1-e)^(1-e))]^0.5} t = tan (pi/4 - lat/2) / [(1-esin(lat) ) / (1 + e sin(lat))]^(e/2)For the reverse transformation:
lat = chi+ (e^2/2 + 5e^4/24 + e^6/12 + 13e^8/360) sin(2 chi) + (7e^4/48 + 29e^6/240 + 811e^8/11520) sin(4 chi) + (7e^6/120 + 81e^8/1120) sin(6 chi) + (4279e^8/161280) sin(8 chi) lon = lon0+ arctan [(E-FE) / (FN-N)] where chi = pi/2 - 2 arctan t t = rho [((1+e)^(1+e)) ((1-e)^(1-e))]^0.5} / 2 a ko rho = [(E-FE)^2 + (N - FN)^2]^0.5