Polar Stereographic

Name Polar Stereographic
EPSG Code 9810
GeoTIFF Code CT_PolarStereographic (15)
OGC WKT Name Polar_Stereographic
Supported By EPSG, GeoTIFF, PROJ.4, OGC WKT

Projection Parameters

Name EPSG # GeoTIFF ID OGC WKT Units Notes
Latitude of natural origin 1 NatOriginLat latitude_of_origin Angular
Longitude of natural origin 2 StraightVertPoleLong central_meridian Angular
Scale factor at natural origin 5 ScaleAtNatOrigin scale_factor Unitless Not in original GeoTIFF ... I added for similarity with EPSG. Defaults to 1.0.
False Easting 6 FalseEasting false_easting Linear
False Northing 7 FalseNorthing false_northing Linear

Notes

There are substantial questions about Stereographic projections in Random Issues.

Examples

Latitude of natural origin: 71N
Longitude of natural origin: 96W
Scale factor at natural origin: 1.0

Projected XProjected YLongitudeLatitude
-2529570-5341800121d20'22.38"W39d6'4.508"N

PROJ.4 Organization

North Pole (NatOriginLat > 0):
  +proj=stere +lat_ts=Latitude at natural origin 
              +lat_0=90
              +lon_0=Longitude at natural origin
	      +k_0=Scale factor at natural origin (normally 1.0)
              +x_0=False Easting
              +y_0=False Northing
South Pole (NatOriginLat < 0):
  +proj=stere +lat_ts=Latitude at natural origin 
              +lat_0=-90
              +lon_0=Longitude at natural origin
	      +k_0=Scale factor at natural origin (normally 1.0)
              +x_0=False Easting
              +y_0=False Northing

EPSG Notes

For the forward transformation from latitude and longitude:

E = FE + rho sin(lon - lon0)
N = FN - rho cos(lon - lon0)
where
rho = 2 a ko t /{[((1+e)^(1+e)) ((1-e)^(1-e))]^0.5}
t = tan (pi/4 - lat/2) / [(1-esin(lat) ) / (1 + e sin(lat))]^(e/2)
For the reverse transformation:

lat = chi+ (e^2/2 + 5e^4/24 + e^6/12 + 13e^8/360) sin(2 chi) 
+ (7e^4/48 + 29e^6/240 + 811e^8/11520) sin(4 chi)
+ (7e^6/120 +  81e^8/1120) sin(6 chi)  + (4279e^8/161280) sin(8 chi)

lon = lon0+ arctan [(E-FE) / (FN-N)]

where chi  = pi/2 - 2 arctan t
t   =  rho [((1+e)^(1+e)) ((1-e)^(1-e))]^0.5} / 2 a ko
rho = [(E-FE)^2  + (N - FN)^2]^0.5